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ABSTRACT The nonsymbiotic tomato hemoglobin SOLly GLB1 (Solanum lycopersicon) is shown to form a homodimer of;36
kDa with a high affinity for oxygen. Furthermore, our combined ultraviolet/visible, resonance Raman, and continuous wave
electron paramagnetic resonance (EPR) measurements reveal that a mixture of penta- and hexacoordination of the heme iron is
found in the deoxy ferrous form, whereas the ferric form shows predominantly a bis-histidine ligation (F8His-Fe21/31-E7His). This
differs from the known forms of vertebrate hemoglobins and myoglobins. We have successfully applied our recently designed
pulsed-EPR strategy to study the low-spin ferric form of tomato hemoglobin. These experiments reveal that, in ferric SOLly GLB1,
one of the histidine planes is rotated 20�(610�) away from a Nheme-Fe-Nheme axis. Additionally, the observed g-values indicate
a quasicoplanarity of the histidine ligands. From the HYSCORE (hyperfine sublevel correlation) measurements, the hyperfine and
nuclear quadrupole couplings of the heme and histidine nitrogens are identified and compared with known EPR/ENDOR data of
vertebrate Hbs and cytochromes. Finally, the ligand binding kinetics, which also indicate that the ferrous tomato Hb is only partially
hexacoordinated, will be discussed in relation with the heme-pocket structure. The similarities and differences with other known
nonsymbiotic plant hemoglobins will be highlighted.

INTRODUCTION

Hemoglobins (Hbs) are ubiquitous proteins found in animal,

fungi, bacteria, protozoa, and plants. Although the existence

of hemoglobin in the animal kingdom has long been common

knowledge, the findings of its presence in nonanimal sources,

including bacteria, unicellular eukaryotes, and plants, are

relatively recent (1). In plants, there are at least three distinct

types of hemoglobins: symbiotic, nonsymbiotic, and trun-

cated hemoglobins. All plant hemoglobins, described so far,

are either monomers or homodimers without heme-heme

interaction (2).

Nonsymbiotic hemoglobins (nsHbs) have recently been

identified inmanymono- and dicotyledonus plants, including

barley, soybean, rice, Arabidopsis, tomato, cotton, chicory,

and corn (3–5). They possess the highest reported oxygen

affinities among plant hemoglobins. Expression is constitu-

tive in some plants and induced by hypoxia in others. Based

on the observations made by Sowa et al. (6), three possible

functions have been proposed for nsHbs: i), they might be O2

transport proteins that scavenge oxygen under hypoxic

conditions; ii), they might act as terminal oxidases that, by

virtue of their high O2 affinity, facilitate glycolytic generation

of ATP by removing NADH under microaerobic conditions;

iii), they could also be O2 sensing proteins that activate other

proteinswith regulatory functions (6,7). Recently, it was found

that tomato nonsymbiotic hemoglobin gene expression can

be influenced also by a broad range of changes in mineral

macronutrient andmicronutrient status, suggestingapreviously

unrecognized generic role for nonsymbiotic hemoglobins in

processes associated with mineral nutrient nutrition (8).

The gene structure appears the same for symbiotic, non-

symbiotic, and truncated hemoglobins with four exons and

three introns at position B12.2, E15.0, and G7.0 (1). There is

a conservation of important amino acids such as the CD1

phenylalanine, C2 proline, F8 proximal histidine, and E7 dis-

tal histidine, between symbiotic and nonsymbiotic hemo-

globins. EST clones from tomato (Solanum lycopersicon)
with high homology to Arabidopsis GLB1 and GLB2 were

identified (5).

In this study, the cDNA for the tomato SOLly GLB1 gene,
which has been suggested to code a nonsymbiotic hemo-

globin, was cloned in the expression vector and the corres-

ponding protein was expressed. Next to the cDNA sequence

that was already determined by Hunt et al. (5), the gene struc-

ture was determined for the first time.

The SOLly GLB1 protein shows high sequence homology

with other nonsymbiotic plant hemoglobins, (Fig. 1). In this

work,wewant to determine if and towhat extent this sequence

homology is reflected in the heme-pocket structure and the

ligand-binding properties of the tomato hemoglobin. Reso-

nance Raman (RR) spectroscopy and continuous-wave (CW)

and pulsed electron paramagnetic resonance (EPR) spectros-

copy is therefore applied to analyze the heme-pocket structure

of the nonsymbiotic tomato Hb, SOLly GLB1. In the past,

CW-EPR spectroscopy has been used extensively to study the
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ferric form of heme proteins (9). Furthermore, RR spectros-

copy is a widely used tool for the analysis of the heme-pocket

structure in both the ferric and ferrous form of heme proteins

(10). Recently, high-resolution pulsed EPR techniques have

been developed that can reveal detailed information on

the environment of the paramagnetic transition metals (11).

These techniques have only rarely been applied to the study

of heme proteins and the majority of these applications in-

volve the use of one-dimensional (1D) pulsed EPR techniques

(12–14), rather than the more advanced two-dimensional

(2D) techniques (15). In our recent work, we showed how

advanced one- and two-dimensional pulsed EPR techniques

can be combined to reveal structural information on low-spin

ferric porphyrin complexes (16). Here, we apply this strategy

for the first time to the study of the heme-pocket structure of

a ferric globin. In addition, the dimerization of SOLly GLB1 is

studied using analytical gel chromatography and the O2- and

CO-binding kinetics is determined. All the results are then

compared to the earlier observations for rice GLB1, the only

nonsymbiotic plant Hb for which an x-ray structure is available

(17), and for Barley hemoglobin, for which an extended RR

analysis is available (18).

EXPERIMENTAL PROCEDURES

Cloning

The SOLly GLB1 DNA sequence was found in the online database

GenBank (EST sequence, accession No. AW035687, J. Alcala, J. Vrebalov,

R.White, A. L.Matern, T. Vision, I. E. Holt, F. Liang, J. Upton, M. B. Craven,

C. L. Bowman, S. Ahn, C.M. Ronming, et al., Clemson University, Clemson,

SC), as ‘‘Lycopersicon esculentum hemoglobin 1’’. To clone the cDNA, the

full-length coding sequence was amplified with specific primers containing

the correct adaptors. The forward primer (59-GCGCATATGAGTAGCTT-

TAGTGAAGAAC-39) contains aNdeI restriction site that covers the initiating

Met codon of the globin gene. The reverse primer 959-GCGGGATCCC-

TACTTCATCTCAGTCTTGATAGC-39) contains the BamHI restriction site.
Total RNA was isolated using the LiCl method, from young tomato leaves

previously frozen and ground in a mortar. Then first-strand cDNA was

synthesized by reverse transcriptase polymerase chain reaction (PCR). The full

coding sequence of SOLly GLB1was amplified by PCR (5min at 95�C (1 min

at 94�C, 1 min at 50�C, 1 min at 72�C) 3 25, and 10 min at 72�C) in a total

FIGURE 1 Alignment of Solanum lycopersi-

con nonsymbiotic hemoglobin, SOLly GLB1,

with globin sequences of different plant and

vertebrate hemoglobins. Phys Mb, Physeter

catodon myoglobin (accession No. P02185);

HA, human a-chain (accession No. J00153);

HB, human b-chain (accession No. M36640);

Ho.vu, Hordeum vulgare hemoglobin (acces-

sion No. U94968); Or.sa 1, Oryza sativa hemo-

globin1 (accessionNo. U76029); Gl.ma,Glycine

max hemoglobin (accession No. U47143); Ca.gl,

Casuarina glauca hemoglobin I (accession No.

L28826), hemoglobin II (accessionNo.X53950);

Ar.th I, Arabidopsis thaliana hemoglobin 1

(accessionNo. NM127165); Tr.to, Trema tomen-

tosa hemoglobin (accession No. Y00296); Tr.or,

Trema orientalis hemoglobin (accession No.

AF027215); So.ly, Solanum lycopersicon hemo-

globin (accession No. AY026343). The con-

served amino acids are highlighted.
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volume of 25 ml containing 1 ml of cDNA, 100 ng of each primer, 13 poly-

merase buffer, 2.5 mM dNTPs, 1.5 mM MgCl2, and 1 ml of Taq polymerase.

The amplified product corresponding to SOLly GLB1was cleaned and cut

with NdeI and BamHI and subsequently ligated into the equivalently cleaved
expression vector pET3a. Recombinants obtained in the Escherichia coli

strain XL1-Bleu were tested by PCR and restriction digests. The complete

sequence and orientation were determined by dideoxy sequencing.

Expression and purification of the protein

The expression plasmid (SOLly GLB1cDNA) was transformed into the E.
coli strain BL21(DE3)pLysS. The cells were grown at 25�C in TB medium

(1.2% bactotryptone, 2.4% yeast extract, 0.4% glycerol, 72 mM potassium

phosphate buffer, pH 7.5) containing 200 mg/ml ampicillin, 30 mg/ml chlor-

amphenicol, and 2.5 mM d-aminolevulinic acid. The expression was induced,

when the culture had an absorption A600 ¼ 1.7, by addition of isopropyl-1-

thio-b-D-galactopyranoside to a final concentration of 0.4 mM, and growth

was continued overnight. Cells were harvested, washed, and resuspended in

lysis buffer (50 mM Tris-HCl, pH 8; 1 mM EDTA, 0.5 mM dithiothreitol).

The cells were then exposed to two freeze-thaw cycles and were sonicated

until completely lysed (19).

The extract was clarified by low (10 min at 10,0003 g) and high (60 min

at 105,000 3 g) speed centrifugation at 4�C and fractioned by ammonium

sulfate precipitation (40–90%). The 90% ammonium sulfate pellet containing

the crude SOLly GLB1 was dissolved in 5 mM Tris-HCl, pH 8.5, dialysed,

and loaded onto a CM-Sepharose Fast Flow column equilibrated in the same

buffer. After washing of the unbound material, SOLly GLB1 was eluted with

200 mM NaCl. The hemoglobin was then concentrated by Amicon filtration

(PM10) and passed through a Sephacryl S200 column (19). The fractions

containing SOLly GLB1 were pooled, concentrated, and stored at �20�C.

Measurement of the autooxidation rate

The spectral measurements were done with a SLM DW2000 spectrophoto-

meter (Urbana, IL). To study the autooxidation, a stock solution of ;100

mM was first reduced with a slight excess of sodium dithionite to obtain the

deoxy ferrous form of the protein. An aliquot was then diluted 20-fold by

injection into a cuvette containing 100 mM potassium phosphate buffer at

pH 7, 37�C, and equilibrated under 1 atmosphere of oxygen; the absorption

spectra were then recorded versus time.

Kinetics of ligand binding

All ligand-binding experiments were performed in 50 mM potassium

phosphate buffer (at pH 7 or 8.5) at 25�C. The bimolecular rebinding kinetics

of the protein with either O2, or COwere measured after flash photolysis with

10 ns YAG laser pulse delivering 160 mJ at 532 nm (Quantel, Les Ulis,

France) with at least 4 s between photolysis pulses to allow sample recovery.

A mixed atmosphere of O2 and CO was also used, which allows a mea-

surement of the O2 to CO replacement reaction to determine the oxygen dis-

sociation rate. Different detection wavelengths (such as 436 nm for CO

rebinding or 419 or 425 nm for the replacement of O2 or the internal ligand,

respectively, byCO) and different ligand concentrationswere used to observe

separately the binding of the external and the protein ligands. The dissociation

rates of the protein (E7-His) and theO2 ligandswere determined from theflash

photolysis kinetics by numerical integration as described previously (19,20).

COdissociation fromSOLlyGLB1was detected spectrally in theSoret region

using a diode array spectrophotometer HP8453 by replacement with O2 by

dilution into a buffered solution equilibrated under 1 atm oxygen (so that the

final [O2] was 1.4 mM, over 100 times more than the remaining [CO] after

the mixing).

Gel filtration chromatography

Gel filtration chromatography analysis was done according to the previous

method (21) with minor modifications. Protein samples were loaded onto a

Superose 12 HR 10/30 column (Amersham Biosciences, Uppsala, Sweden)

equilibrated at 25�C with 150 mM tris-acetate buffer at pH 7.5 and linked

to aGilsonHPLC system (Middleton,WI). Elution profilesweremonitored at

415 and 280 nm. The flow rate was constant and equal to 0.04 ml/mn. The

dilution factor for each elution profile was estimated by the ratio between the

width at half-height (converted into milliliters) and the sample volume. From

an average of several experiments the dilution factor was found to be 60.

Included (Vi) and excluded (V0) volumes were measured by using a 10%

acetone solution and blue dextran, respectively. The elution volume of a

protein sample (Ve) corresponds to the elution profile peak (similar to the

value obtained by comparison of elution peaks at peak half-width and peak

half-height).

From the column characteristics, the weight-averaged partition co-

efficient, sw, is given by the relationship:

sw ¼ Ve � V0

V i

:

For a dimer this coefficient depends upon the fractions of monomers

( fM) and dimers ( fD) and their respective partition coefficients, sM and sD,

following the relationship:

sw ¼ fMsM 1 fDsD:

Finally dimer and tetramer fractions are related to the protein con-

centration (P) and the equilibrium constant (KMD) of the monomer-dimer

autoassociation by the following relationship:

fD ¼ �11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 8 3 KMD 3 Pt
p

4 3 KMD 3 Pt
:

The elution volume of a globin tetramer was determined with a solution

of diaspirin cross-linked hemoglobin from Baxter (Deerfield, IL) and the

elution volume of a monomeric globin with a solution of lyophilized sperm

whale Mb from Sigma (St. Louis, MO). Data simulations and standard errors

were carried out using the nonlinear least-squares procedure of Scientist

(MicroMath, Salt Lake City, UT).

Optical and resonance Raman spectra

Optical measurements were done with a CARY-5 UV-Vis-NIR spectro-

photometer (Varian, Palo Alto, CA). All optical spectra were measured in

a range from 350 to 700 nm. Resonance Raman measurements were carried

out on an 80-cm DILOR XY-800 Raman scattering spectrometer (Dilor,

Lille, France) equipped with a triple monochromator allowing for multi-

channel liquid-nitrogen cooled charge-coupled device detection. The excita-

tion source was a Kr-ion laser (Spectra Physics 2000, Mountain View, CA)

(413.1 nm). The protein solution was stirred at 6000 rpm to avoid local

heating. Five spectra (with individual recording times of 120 s) were re-

corded and averaged after the removal of cosmic ray spikes by an in-house-

developed program. Frequency shifts in the Raman spectra were calibrated

using acetone-CCl4 as a reference. The laser power was maintained at 17 mW.

The ferric state of the protein was formed after exposure of the protein

to air for .1 h. The deoxy ferrous form of the sample was obtained by

equilibration under nitrogen and adding an excess of sodium dithionite. The

concentration of the protein samples used for optical and RR measurements

was typically ;60 mM in Tris buffer, pH 8.5.

Continuous-wave electron
paramagnetic resonance

CW-EPR spectra were recorded on a Bruker ESP300E spectrometer (Bruker

BioSpin, Karlsruhe, Germany) (microwave frequency 9.43 GHz) equipped

with a gas-flow cryogenic system (Oxford Instruments, Oxon, UK), allowing

operation from room temperature down to 2.5 K. All the spectra were re-

corded with a microwave power of 10 mW, a modulation frequency of 100 kHz,
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and modulation amplitude of 0.5 mT. The calibration of the magnetic field

was done using a sample of diphenylpicrylhydrazyl and an NMR

Gaussmeter (Bruker ER 035 M). All the EPR spectra were simulated with

the EasySpin program (www.esr.ethz.ch).

Pulsed electron paramagnetic resonance

All pulse EPR experiments were carried out on a Bruker ESP 380E

spectrometer (Bruker BioSpin) (microwave frequency 9.76 GHz) equipped

with a liquid-helium cryostat from Oxford. The experiments were performed

at a temperature of 6 K with a repetition rate of 1 kHz. The magnetic field

was measured with a Bruker ER035M NMR Gaussmeter. The following

pulse EPR techniques were used.

1. Three-pulse electron spin echo envelope modulation (ESEEM) (11).

The pulse sequence used was p/2-t-p/2-T-p/2-t-echo with pulse

lengths tp/2 ¼ 16 ns. The time interval T was varied from 96 to 5696 ns

in steps of 16 ns, whereas the time interval t was varied from 96 to 336

ns in steps of 8 ns. A four-step phase cycle was used to eliminate the

unwanted echoes. The individual time traces were baseline corrected

with a third-order polynomial, apodized with a Hamming window, and

zero-filled. After 1D Fourier transformation the absolute value spectrum

was calculated. To get a blind-spot free 1D-CP spectrum the t-traces

were summed after 1D Fourier transformation.

2. Hyperfine sublevel correlation (HYSCORE) (11,22) experiments were

carried out with the pulse sequence p/2-t-p/2-t1-p/2-t2-p-t-echo. An

eight-step phase cycle was performed to eliminate unwanted echo

contributions. The following parameters were used: pulse lengths of

tp/2 ¼ 16 or 24 ns and tp ¼ 16 ns, starting times of 96 ns for t1 and t2 and
time increments D ¼ 16 ns (data matrix 300 3 300). Different t-values

were taken to reduce the blind spots. The individual time traces were

baseline corrected with a third-order polynomial, apodized with a Ham-

ming window and zero-filled. After 2D Fourier transformation the absolute

value spectrum was calculated. The HYSCORE spectra were simulated

using programs developed at the Swiss Federal Institute of Technology

Zurich (23). The same sets of t-values as in the experiments were taken.

For the simulation, nonideal pulses were used with the same pulse

lengths as in the experiment. The Euler angles a, b, and g define an

active rotation (right-hand) of the matrices and tensors with respect to

the g principal axes system. To optimize the proton signal intensity, the

second and third p/2 pulses were experimentally replaced by matched

pulses of 48 ns length (24).

3. Combination-peak experiments (11). The experiments were perfor-

med with the pulse sequence: p/2-t-p/2-T-p-T-p/2-t-echo, with pulse

lengths of tp/2 ¼ 16 ns and tp ¼ 16 ns. An eight-step phase cycle was

used. The interpulse time T was varied from 96 to 2888 ns in steps of

8 ns; t was varied from 96 to 328 ns in steps of 8 ns. An eight-step phase

cycle was performed to eliminate unwanted echoes. The data were manip-

ulated similarly to the three-pulse ESEEM data. The proton combination

frequencies in the 1D-CP spectra were analyzed using the procedure

outlined in Astashkin et al. (14).

Parameters determined by EPR experiments

From the CW-EPR spectra the g tensor of the ferric form can be determined.

The principal values of this tensor give direct information on the axial

ligands of the heme complex (9). The pulsed EPR experiments reveal the

hyperfine interactions (A tensor) between the unpaired electron(s) and

surrounding nuclei with a nuclear spin (I . 0) and give information on the

nuclear-quadrupole-interaction tensors (P tensors) for the surrounding nuclei

with I $ 1. The principal values Px, Py, and Pz of the traceless P tensor

are usually expressed by the quadrupole-coupling constant K ¼ e2qQ/(4h)

and the asymmetry parameter h, with Px ¼ �(e2qQ/(4h))(1 � h), Py ¼
�(e2qQ/(4h))(1 1 h), and Pz ¼ e2qQ/(2h). For a more detailed description

of the fundaments of the EPR experiments we refer to the Supplementary

Material and to the basic literature (11).

RESULTS AND DISCUSSION

Amino acid sequence

Fig. 1 shows the alignment of SOLly GLB1 and other

known plant and vertebrate globins. Based on the sequence

similarity it is clear that this tomato globin belongs to group I

of the plant globins. The SOLly GLB1 protein shows 74%

similarity with Arabidopsis thaliana GLB1 and 71% with

rice (Oryza sativa) GLB1. It contains the proximal histidine

F8, the distal histidine E7, the phenylalanine CD1, and the

proline C2. These amino acid residues are conserved among

all plant hemoglobins, with the exception of the new family

of the truncated hemoglobins (25). There are a few remark-

able amino acid substitutions in the SOLly GLB1 compared

with other (group I) plant globins. At position B5 there is an

unprecedented tryptophan, a lysine is present at position E9

where in other plants a hydrophobic residue is present. A

lysine at this position is, however, not unique as this exists in

vertebrate globins as well.

Analytical gel filtration chromatography

Analytical gel chromatography of the oxidized hexa-co-

ordinated tomato globin showed a transition from a monomer

species to a species with higher molecular weight, which was

reasonably attributed to a homodimer species (see Supple-

mentary Material). Because of the elevated dilution factor of

our chromatography equipment, we were not able to monitor

elution profiles for final protein concentrations higher than

10 mM, where higher molecular weight species might have

been observed. Any high molecular weight forms, such as

a tetrameric state, are apparently not very stable and probably

not relevant for the in vivo concentrations. The monomer-

dimer equilibrium binding coefficient was 2 3 107/M (with

a precision of 25%), being equivalent to a monomer-dimer

assembly free energy of 10 kcal/mol heme.

Optical experiments

The deoxy ferrous form of tomato nonsymbiotic hemoglo-

bin, SOLly GLB1, reveals a Soret band at 425 nm and the

a- and b-bands at 527 and 558 nm, respectively (Fig. 2). Sim-

ilar values were reported for nonsymbiotic barley Hb (26),

nonsymbiotic rice Hb1 (7), neuroglobin (27), and cytoglobin

(28). They are characteristic of a hexacoordinated heme with

the iron in the low-spin FeII state. The sequence alignment

identifies the proximal (F8) and distal (E7) residues of SOLly

GLB1 as histidines, suggesting a His-Fe21-His conforma-

tion as the most likely binding scheme. The a-absorption

band was not as strong as for Ngb (27), suggesting only

a partial hexacoordination, as observed for rice Hb1 (29). A
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small increase in the contribution of the pentacoordinated

form was found when going from pH 7 to pH 8.5 (see

Supplementary Material).

The ferric form of the protein displays absorptions at 410,

531, and 565 nm (Fig. 2), typical for a hexacoordinated low-

spinFeIII heme, suggestingpredominantbis-histidinecoordina-

tion. Also, the absorption spectrum shows a tail extending in

the 630-nm region, which suggests a smaller contribution of

an aquomet form (typical absorption maxima for aquomet

globins are 408, 503, and 633 nm (30)). The presence of a

minor contribution of an aquomet form is more clearly visible

in the CW-EPR and RR spectra (see following sections). No

significant pH effect from 7.0 to 9.5 was observed, in agree-

ment with the presence of a small fraction of the aquomet

form.

Resonance Raman experiments

It is well established that the high-frequency region (900–

1700 cm�1) of the RR spectra of heme proteins is comprised

of porphyrin in-plane vibrational modes, which are markers

of the oxidation state, coordination state, and the spin state of

the central iron atom (10). The low-frequency region of the

RR spectra (100–900 cm�1) shows several in-plane and out-

of-plane vibrational modes of the heme, including heme-

propionate modes and ligand vibrational modes.

The RR spectrum of the ferric form of SOLly GLB1 at pH

8.5 displays the electron-density marker n4 at 1371 cm�1,

which is characteristic of the Fe(III) state (Fig. 3 b). The
values of n3 (1502 cm

�1) and n10 (1636 cm
�1) are typical for

a hexacoordinated low-spin FeIII heme form. The appearance

of a weak line at 1473 cm�1 suggests that a minor population

of a hexacoordinated high-spin FeIII complex is present (18).

This indicates the presence of an aquomet form, as will be

confirmed by the CW-EPR results. The line at 1473 cm�1

disappears almost completely at pH 7 (see Supplementary

Materials), indicating a lower amount of the aquomet form at

lower pH. The above observation thus suggests that the bis-

hisitidine coordination becomes less favorable at higher pH,

although it remains the dominant coordination form for ferric

SOLlyGLB1 (see EPRdata later in the article). The porphyrin

core-size markers, n3, n38, n2, and n10, of the ferric low-spin

form are similar to those observed for other hexacoordinated

globins (28,31,18) and predict a porphyrin center to pyrrole

nitrogen distance of 0.1995 nm (see SupplementaryMaterial;

(32)).

The high-frequency region of the RR spectrum of deoxy

ferrous SOLly GLB1 (Fig. 3 d) is dominated by a hexacoordi-

nated low-spin FeII heme form (n4 ¼ 1359 cm�1, n3 ¼ 1490

cm�1). In accordance with the absorption data (Fig. 2), a peak

at n3¼ 1467 cm�1 indicates the presence of a pentacoordinated

high-spin ferrous heme form. The intrinsic intensity of n3 is

very high for pentacoordinated species compared to hexaco-

ordinated species, making a direct assessment of the relative

populations by inspection of the RR spectra difficult (18).

Comparison of the RR spectra of deoxy ferrous SOLly GLB1

at pH 7 and pH 8.5 (Supplementary Material) shows a slight

increase in the 1467 cm�1 signal (thus pentacoordination)

with pH, confirming the absorption data. We thus observe

also for the ferrous form of the protein a decrease in the bis-

histidine coordination upon increase of pH.

For both the ferric and ferrous form of SOLly GLB1, the

out-of-plane modes g6, g7, g12, and g21 are hardly visible

indicating, as is typical for a bis-histidine coordination, a

relaxed state of the heme group with the iron almost totally in

the porphyrin plane (Fig. 3, a and c).
In accordance with the findings for barley Hb (18), the peak

at 214 cm�1 is assigned to the Fe-His(proximal) stretching

mode, nFe-His (Fig. 3 c). This stretching mode appears for

pentacoordinated ferrous heme proteins, confirming the earlier

findings that a considerable percentage of the ferrous SOLly

GLB1 is in a pentacoordinated form. In peroxidases, the nFe-His
mode is detected at frequencies higher than 240 cm�1 (33,34).

This high frequency is ascribed to the imidazolate character

of the proximal histidine (34). The low nFe-His mode of SOLly

GLB1 (similar to the one of mammalian Hbs and Mbs (35)

and Barley Hb (18)) suggests the presence of an uncharged

proximal imidazole.

Finally, it should be remarked that the RR spectra of ferric/

ferrous SOLly GLB1 and Barley Hb (18) are highly similar.

CW-EPR experiments on the ferric form of
SOLly GLB1

Fig. 4 shows the EPR spectrum of the nonsymbiotic tomato

Hb, SOLlyGLB1. It is dominated by a rhombic signal, charac-

teristic of a low-spin Fe(III) heme. A smaller contribution of

a high-spin ferric form is also discerned in the spectrum. The

FIGURE 2 Absorption spectra of the ferric (solid line) and the deoxy fer-

rous (dashed line) form of nonsymbiotic tomato hemoglobin, SOLly GLB1.

The proteins (;60 mM) were dissolved in 5 mM Tris-HCl buffer at pH 8.5.

2632 Ioanitescu et al.

Biophysical Journal 89(4) 2628–2639



observation of the latter signal corroborates the optical

absorption and RR data, indicating the presence of a minor

population of an aquomet form.

The g-values of the low-spin ferric form of SOLly GLB1

are given in Table 1 in comparison with those of other

bis-histidine coordinated heme proteins. The g-values can be
related to the ligand-field parameters V/D and D/l (V ¼
rhombic splitting parameter; D ¼ tetragonal splitting param-

eter; l ¼ spin-orbit coupling) using the formulae of Taylor

(36) (Table 1). According to Blumberg-Peisach’s truth tables

(9), the EPR parameters of SOLly GLB1 agree with a

bis-imidazole ligation, confirming our earlier assumptions

that the ferric protein is in a F8His-Fe31-E7His ligation form.

The ligand-field parameters can reveal also valuable in-

formation on the histidine-plane orientations in the heme

FIGURE 3 Resonance Raman spectra of

tomato nonsymbiotic hemoglobin, SOLly

GLB1. Low-frequency (a,c) and high-

frequency (b,d) region of ferric SOLly

GLB1 (a,b) and deoxy ferrous SOLly

GLB1 (c,d). The laser-excitation wave-

length was 413.1 nm at 17 mW power.

The proteins were dissolved in 5 mM

Tris-HCl buffer at pH 8.5.

FIGURE 4 CW-EPR spectrum of ferric tomato nonsymbiotic hemo-

globin, SOLly GLB1. Experimental (top) and simulated (bottom) spectrum.

HS, high-spin, LS, low-spin. *Indicates the signals from nonheme iron. The

protein was dissolved in 5 mM Tris-HCl buffer at pH 8.5. The measurement

was performed at 10 K.

TABLE 1 The g-values of the dominant low-spin component in

ferric SOLly GLB1in comparison with other hexacoordinated

heme proteins

gx
(60.02)

gy
(60.01)

gz
(60.01) V/l V/D Reference

Ferric SOLly GLB1 1.44 2.23 2.98 1.72 0.54 This work

Ferric Barley Hb 1.48 2.22 3.02 1.72 0.49 18

Cytochrome b5
(house fly)

1.35 2.22 3.07 1.54 0.51 55

Cytochrome b5
(bovine liver)

1.43 2.23 3.03 1.66 0.52 56

Cytochrome b559 1.53 2.25 2.98 1.84 0.53 15

Flavocytochrome b2 1.47 2.22 2.99 1.74 0.51 42

Ferric MbIm 1.53 2.26 2.91 1.93 0.58 57

Fe(III)PPIX(im)2 1.52 2.25 2.98 1.83 0.53 15

Ferric mNgb 1.29 2.15 3.12 1.41 0.44 58

Ferric hCygb 1.20 2.08 3.20 1.26 0.39 58
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pocket. When V/l � 2, the histidine planes are coplanar

(37,38). As the histidine planes get twisted and tilted, V/l
will decrease and the gz-value will become larger than 3

(37,38). Furthermore, if the histidines are quasiparallel, the

V/D value gives an indication on whether the histidine planes

are eclipsing or bisecting a Nheme-Fe-Nheme axis (37). V/D ¼
2/3 is the expected value for a full eclipsing of two coplanar

histidine planes with a Nheme-Fe-Nheme axis (37). This is in

accordance with the data for MetMbIm, where the x-ray

structure shows only a deviation of 16� from coplanarity of

the imidazoles and a full eclipsing case for one of the

imidazoles (39). For ferric neuroglobin x-ray studies have

proven that the histidine planes are perpendicular to each

other and in a staggered position with respect to the pyrroles

(pointing versus the meso-carbons of the heme group)

(40,41), fully in accordance with the low V/l value and even

the low V/D value (despite the fact that the His ligands

are no longer parallel) (Table 1). The ligand-field parameters

for ferric SOLly GLB1 lie in between the two extreme cases.

From the V/l value we derive that the angle between the two

histidine planes is considerably lower than 90�. Furthermore,

the V/D value of ferric SOLly GLB1 suggests that the

histidines are not eclipsing with aNheme-Fe-Nheme axis. Based

on Quinn et al. (37) this value agrees with a turning angle of

the histidine planes versus the Nheme-Fe-Nheme axis of;28� if
coplanarity of the histidines is assumed. The latter assumption

is not fully correct (see V/l value), implying that more

advanced EPR techniques are needed to determine the

histidine orientation in SOLly GLB1.

Note also that the EPR parameters of ferric SOLly GLB1

are close to those of flavocytochrome b2 (flavocyt b2) (Table
1; (42)), for which x-ray studies predict a deviation from

coplanarity of 13–18� and the histidine planes are oriented in
positions inbetween theeclipsedandstaggeredextrema (43,44).

Analogously, an x-ray study of oxidized bovine cytochrome

b5 (cyt b5) predicts an angle of ;21� between the histidine

planes, with one histidine exactly bisecting and the other

histidine tilted 26� away from a Nheme-Fe-Nheme axis (45).

Finally, the close resemblance ofBarleyHbandSOLlyGLB1 is

again reflected in the EPR parameters (Table 1), in accordance

with the analogies in the RR spectra noted earlier.

Pulsed EPR experiments

To get more detailed information on the heme-pocket

electronic and geometric structure, pulsed EPR experiments

were undertaken. These experiments reveal information on

the interaction between the unpaired electron on the iron and

the surrounding nitrogens and protons.We recently outlined a

general strategy for the study of low-spin ferric porphyrin

complexes with pulsed EPR (16). Here, we apply this strategy

to study ferric SOLly GLB1. In the following paragraphs, we

report on the major steps and results of the procedure. We

refer the reader to the Supplementary Materials for a more

detailed and technical description of the analysis.

The first step in the analysis involves the recording of the

two-dimensional HYSCORE spectra at different observer

positions. Fig. 5, a and b, shows two such nitrogenHYSCORE
spectra. Further spectra are shown in the Supplementary Ma-

terials with complementary three-pulse ESEEMspectra. Based

on the previous isotope-labelingwork of a heme-model system

by Garcı́a-Rubio et al. (15), the double-quantum crosspeaks in

the HYSCORE spectra could be attributed to contributions

of the heme and nearest histidine nitrogens (Fig. 5, a and b;
Supplementary Material). Using a recently developed simula-

tion program (23), the HYSCORE spectra could be simulated

using the hyperfine and nuclear-quadrupole parameters given

in Tables 2 and 3 (Fig. 5, c and d; Supplementary Material).

This procedure reveals the orientation of theA andP tensors in

the g axes frame. However, to relate these parameters to struc-

tural information, we need to determine the position of the

g-tensor axes in the molecular frame. From the g-values, it can
be predicted that the gz axis is approximately along the heme

normal (46). The orientation of the gx and gy axes in the por-

phyrin plane is less trivial. The HYSCORE spectra of the por-

phyrin nitrogens are sensitive to the in-plane rotation of the g
axes versus the hyperfine and nuclear-quadrupole tensors of the

porphyrin nitrogens. Earlier single-crystal measurements on

different metallo-porphyrin systems showed that the largest

nuclear-quadrupole principal value lies in the porphyrin plane

perpendicular to the Fe-Np bond (47,48). Using this informa-

tion the g axes can be oriented in the molecular frame. Best

agreements were found between the experimental and simu-

lated HYSCORE spectra when the g-tensor axes are ;10�
(610�) tilted away from theNheme-Fe-Nheme axes (Fig. 6, angle

z; Table 2).

In a second step, the results from the CP experiments and

proton HYSCORE experiments in combination with the cou-

nterrotation principle are used to determine the orientation of

the histidine planes in the g axes frame (14,16,46) (see details

in Supplementary Material). The analysis shows that one of

the histidine planes is turned over an angle z0¼�20� (610�)
in the counterdirection of the tilt of the gx axis (Fig. 6). The
orientation of the second histidine plane is less well

determined and may lie in the regions marked by 1 and 2 in

Fig. 6. However, our earlier CW-EPR analysis predicted a

small deviation from coplanarity between the two histidine

planes (10–25� based on the spectral analogies with bovine

cyt b5 and flavocyt b2 (43–45)). This suggests that the second
histidine plane lies within region 1 rather than within region 2

(Fig. 6).

The distance between the iron atom and the nearest protons

on the axially ligated histidines is found to be 0.325 (60.005)

nm whereby the Fe-H axis is found to be tilted over an angle

32� (65�) with respect to the heme normal. This leads to an

estimation of the Fe-NHis distance of 0.224 (60.020) nm,

which is normal for hexacoordinated globins (49,17).

Table 2 shows that the hyperfine and nuclear-quadrupole

parameters of the heme nitrogens of ferric SOLly GLB1 are

typical values for low-spin heme proteins. The hyperfine
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values are negative due to an excess of b-spin in the nitro-

gen 2s-orbital (16,50). This is in contrast to the hyperfine

couplings of the heme nitrogens of high-spin ferric globins,

characterized by a positive sign and larger average value

(47). Analogous trends are observed for the imidazole nitro-

gens (Table 3). From earlier studies, it is known that the e2Qq
value of the coordinated nitrogen of the proximal histidine in

Mb is very sensitive to axial bond changes, such as differ-

ences in the Fe-N distance and the iron-nitrogen p bonds

(13). Inspection of Table 3 suggests that the je2Qqj value of

the heme nitrogen(s) is considerably lower in the case of a

bis-imidazole coordination than in the case where one of the

two axial ligands is not an imidazole. Pulsed EPR mea-

surements on neuroglobin and cytoglobin are in progress to

determine whether this is a feature general for all bis-histidine

ligated heme proteins or whether it depends on the relative

orientation of the histidines.

Kinetics study

It is clear that the equilibrium and kinetic proprieties of the

external ligand binding will be closely related to the heme-

pocket structure. Kinetic studies of O2 and CO binding to

SOLly GLB1 are presented in Table 4 and compared with

other known hexacoordinated proteins. Ferrous SOLly GLB1

shows a very high affinity for oxygen. Its O2-association

constant (kon) is similar to other O2 transport proteins, such

as human Hb, however, the high affinity of SOLly GLB1 for

O2 results from a low dissociation constant (koff) indicating
a favorable orientation of the distal histidine after O2 binding

FIGURE 5 Nitrogen HYSCORE spectra of ferric SOLly GLB1. (a,b) Experimental spectra at observer position g ¼ gz (a) and g¼ gy (b). The experimental

settings are given in the text. The double-quantum crosspeaks are indicated with arrows and ascribed to the different nitrogen types. (c,d) Simulations of the

spectra (a,b) using the parameters in Tables 2 and 3.

FIGURE 6 Schematic drawing of the orientation of the g-tensor axes and
the histidine planes in the molecular frame as derived from the pulsed EPR

experiments. The angles z and z0 and the explanations of the regions 1 and 2

are given in the text.
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for the stabilization of the dipolar Fed1-O2
d� bond via a hydro-

gen bond. Similar observations were made for Arabidopsis
GLB1 (3), Barley Hb1 (26), and rice Hb1 (7).

Furthermore, the association and dissociation rate con-

stants of the distal histidine have been determined: kHison ¼
kHisoff ¼ 2003s�1. The values are different from those reported

for Cygb (kHison ¼ 2003s�1, kHisoff ¼ 23s�1) (49,51) or mNgb

(kHison ¼ 20003s�1 and kHisoff ¼ 1:23s�1) (27), for which the

observed O2 and CO affinities are greatly reduced by the

competition with the distal histidine (Kobs ¼ Kpenta/(1 1

KHis)). Indeed, the histidine on-and off-rates are similar

resulting in a weak affinity of the distal histidine. There is a

large pH dependence in these rates (kHison � 603s�1; kHisoff �
1203s�1 at pH 8.2); however, the ratio is little changed,

leading to a small decrease of the O2 affinity (0.02 vs. 0.015

mmHg).Note that large pH effects on theO2 affinity are rarely

observed for nonallosteric hemoglobins. These differences

between Ngb and SOLly GLB1 in the histidine binding rates

clearly reflect the differences in the electronic and geometric

structure of the heme as was already clear from comparison of

the spectroscopic data.

A different heme-pocket environment is also suggested by

the autooxidation rate of SOLly GLB1 (koxid ¼ 0.7/h). This

value is much lower than the reported values for mNgb

(19/h), but denotes a faster autooxidation relative to Hbs and

Mbs involved in O2 delivery.

The CO rebinding kinetics after photodissociation are

shown in Fig. 7. The initial kinetics shows the usual depen-

dence on the CO concentration, as expected for a bimolecular

reaction. The slower phase is less distinct for SOLly GLB1, as

compared toNgb, indicating amuch higher rate of dissociation

for the internal ligand. As observed for the absorption spectra,

the kinetics indicate only aweak pHdependence in the fraction

hexacoordinated form for the ferrous deoxy protein.

There was no evidence of cooperativity of ligand binding

in the CO binding kinetics of the tomato globin for which the

short-lived pentacoordinated state does not exceed a few

milliseconds even at low [CO] due the histidine binding rate.

Indeed, we did not observe a change of the kinetic features

at different levels of CO photodissociation. A cooperativity

has been reported for dimers of Scapharca homodimer Hb

(52), which dimerize in the same concentration range. Note

that the formation of homodimers occurs in Barley Hb (26),

Parasponia Hb (53), and at a much higher concentration for

rice Hb1 (29). Further studies on the oxygenated globin

aggregation state could also confirm if a change of stability

of the dimer interface occurs upon ligation of an external

ligand as opposed to the distal histidine in the oxidized form.

TABLE 2 Hyperfine and nuclear-quadrupole parameters for the porphyrin nitrogens of ferric heme complexes and heme proteins

Ax (MHz)

60.2

Ay (MHz)

60.2

Az (MHz)

60.2

a;b; g (�)
610�

e2qQ (MHz)

60.1

h

60.05 a;b;g (�) 610� Reference

SOLly GLB1 �4.5 �3.6 �5.4 0,10,10 1.75 0.05 0,90,100 This work

MbOH �4.9 �5.1 �5.3 0,0,0 2.2 0.1 0,45,0 12

AquometMb 9.86 6.89 7.11 0,0,0 2.08 0.48 90,90,0 47

FeTPP(4-MeIm)2* �4.8 �4.8 �5.8 0,0,0 1.85 0.1 90,90,0 16

Cytochrome b559 �4.9y �4.7y �5.8 0,20–38,0 1.6–2.2 0–0.27 0,90,0 15

*TPP, tetraphenylporphyrin; 4-MeIm, 4-methyl imidazole.
yThese are the Axx and Ayy values in the g axis frame with 0.4 , Axy , 1.3 MHz. The real Ax and Ay values will thus deviate from these values.

The Euler angles are defined in the g axis frame. The sign of the hyperfine and nuclear-quadrupole couplings is based on earlier studies (16,47). The error

margins relate to this work.

TABLE 3 Hyperfine and nuclear-quadrupole parameters for the nearest imidazole nitrogens of ferric heme

complexes and heme proteins

Ax (MHz)

60.3

Ay (MHz)

60.3

Az (MHz)

60.3

a,b,g (�)
615�

e2qQ (MHz)

60.2 h 6 0.1

a,b,g (�)
610� Reference

SOLly GLB1
�5.1 �6.4 �4.9 0,5,30 �1.6 0.9 0,5,30

This work�5.4 �6.7 �4.9 0,5,55 �1.6 0.9 0,5,55

MbOH �5.5 �5.5 �4.2 0,7,0 �2.3 0.1 0,13,0 12

MbCN �2.6 �2.6 �1.5 0,15,0 �2.5 0.3 0,5,0 13

MbN3 �4.6 �4.6 �3.0 0,10,0 �3.2 0.1 0,23,0 13

Mb(b-mercaptoethanol) �2.6 �2.6 �1.4 0,7,0 �2.5 0.3 0,18,0 13

AquometMb 8.33 8.08 11.55 0,0,0 �2.24 0.53 0,0,0 47

FeTPP(4-MeIm)2* �5.7 �6.2 �5.3 0,0,0 �1.7 0.2 0,0,0 16

Cyt b559 �5.6y �6.2y �5.1 0,65,0 �1.6 1 – 15

*TPP, tetraphenylporphyrin; 4-MeIm, 4-methyl imidazole.
yThese are the Axx- and Ayy-values in the g axis frame with Axy , 0.7 MHz. The real Ax- and Ay-values will thus deviate from these values.

The Euler angles are defined in the g axis frame. The sign of the hyperfine and nuclear-quadrupole couplings is based on earlier studies (16,47). The error

margins relate to this work.
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Comparison with other nonsymbiotic
plant hemoglobins

Because of the 71% sequence similarity between SOLly

GLB1 and rice Hb1, one would expect a strong analogy

between the two hemoglobins on the level of the heme-

pocket structure and their O2 and CO binding capacities.

Inspection of Table 4 shows us that there is, however, a large

difference in the O2 and CO affinities of both proteins, which

strongly indicates differences in the heme-pocket area.

An x-ray study on rice Hb1 revealed that this protein is

a homodimer with an unusual bis-histidyl heme coordination

(17). Our studies confirm both characteristics for SOLly

GLB1. Furthermore, the x-ray study of ferric rice Hb1 shows

an angle of ;28� between the proximal histidine and the

nearest Nheme-Fe-Nheme axis, and places the distal histidine in

a staggered position with respect to the pyrrole nitrogens with

an angle of ;65� between the two histidine planes ((17);

Brookhaven Protein Data Bank). The pulsed EPR data of

ferric SOLly GLB1 reveal that one of the axial histidine

planes is rotated 20� (610�) away from a Nheme-Fe-Nheme

axis. This agrees with the orientation of the proximal histidine

in rice Hb1. Two orientations of the second histidine are

compatible with the pulsed EPR data, namely an orientation

in region 1 or 2 as indicated schematically in Fig. 6. Based on

the g-values and the many spectral analogies with cyt b5 and
flavocyt b2, for which x-ray structures are known, an

orientation of the distal histidine in region 1 is found to be

more likely. This assignment deviates from the structural

arrangement found in rice Hb1. This can explain the signifi-

cant differences in the exogenous ligand affinities. Indeed, the

extreme slow oxygen and CO dissociation, observed both for

rice Hb1 and Barley Hb (Table 4), implies stabilization of the

bound ligand, commonly by hydrogen-bond formation from

a distal residue to the bound ligand as in whale Mb (54). For

CO-ligated ferrous Barley Hb, there is strong hydrogen bond-

ing between theCOmolecule and the distal histidine (18). The

increase in theO2 andCOdissociation rates by anorder ofmag-

nitude upon going from rice and Barley Hb to SOLly GLB1

implies a less strong stabilization of the exogenous ligand by

the distal histidine,which indicates a different orientation of the

histidine in the heme pocket. Note that the SOLly GLB1 has

a Lys on position E9 instead of the hydrophobic amino acids

found in the other nsHbs. Although this amino acid is not in the

heme pocket, the change in polarity may well influence the over-

all position of the E-helix and thus cause the change in the

distal histidine orientation. X-ray studies are in progress to

clarify these analyses.

The RR spectra of both the ferrous deoxy and ferric forms

of SOLly GLB1 and Barley Hb1 are very similar, despite a

clear difference in the ligand affinities (Table 4). This is not

surprising, because the RR spectra are not sensitive on the

orientation of the distal histidine, as long as this conforma-

tional difference does not cause major out-of-plane distor-

tions in the heme.

TABLE 4 Ligand binding parameters for ferrous SOLly GLB1 and other globins

Protein kO2
on (mM�1s�1) kO2

off ðs�1Þ KO2 (nM) KHis kCOon (mM�1s�1) kCOoff ðs�1Þ KCO (nM) Reference

SOLly GLB1 30 0.5 15 0.7 1 0.02 20 This study

Oryza sativa Hb1 (rice) 68 0.038 0.56 0.3 7.2 0.001 0.138 29

Arabidopsis Hb 150 2 14 50 – – – 20

Soybean Lb 120 5.6 47 – 13 0.0078 0.62 59

Barley Hb 9.5 0.0272 2.86 – 0.57 0.0011 1.93 26

Parasponia Hb 165 15 90 – 14 0.019 1.4 59

Sperm whale Mb 14 12 857 – 0.51 0.019 37 60

Human Hb 40 50 1250 – 6 – – 30

Ascaris Hb 1.5 0.0041 2.7 – 17 0.018 1.1 61

mNgb 300 0.4 1.3 ;1650 72 0.013 0.18 27

HCygb 27 0.9 33 100 5.6 0.003 21.7 49,62

On/off-rates were measured at 25�C; Kd¼ koff/kon (nM) for O2 or CO is the dissociation coefficient. The observed affinity for binding to exogenous ligands

for hexacoordinated globins is then Kobs ¼ Ka/(1 1 KHis) with Ka ¼ 1 / Kd and KHis the association coefficients.

FIGURE 7 Rebinding kinetics after photodissociation of CO (detected at

436 nm) at pH 7, 25�C. Data are shown for SOLly GLB1 (tomato) Hb

equilibrated under 1, 0.1, and 0.01 atm CO, and compared to neuroglobin

under 0.1 atm CO. In general the hexacoordinated globins display two

kinetic phases, because CO and histidine will compete for binding sites;

histidine binding becomes more competitive at the lower [CO]; the fraction

that bind histidine may display a very slow replacement by CO depending on

the histidine dissociation rate. For Ngb the fraction that binds histidine

requires .1 s for full recovery of the CO form indicating a high histidine

affinity, whereas SOLly GLB1 shows a much faster return to the preflash

(CO bound) condition. The slow phase is less distinct for SOLly GLB1,

because the histidine on- and off-rates are nearly equal at 200/s.
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The high O2 affinity for all nonsymbiotic Hbs in com-

parison to mammalian Hbs clearly excludes the earlier hypo-

thesis that nsHbs can function as O2 transporters that sequester

O2 under hypoxic conditions and that facilitate O2 diffusion

to cells needing aerobic mitochondrial respiration (7). The

hypothesis that nsHbs may act as O2 sensors that undergo

significant conformational change in response to ligand bind-

ing and release whereby other proteins or enzymes are acti-

vated (6,7) can agree with the bis-histidine coordination

observed in all investigated nsHbs. Indeed, this coordination

implies that large tertiary conformational changes will occur

in response to ligand binding.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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